Preprocess flow data#
In this notebook, we load an fcs file into the anndata format, move the forward scatter (FCS) and sideward scatter (SSC) information to the .obs
section of the anndata file and perform compensation on the data. Next, we apply different types of normalisation to the data.
import readfcs
import pytometry as pm
%load_ext autoreload
%autoreload 2
Read data from readfcs
package example.
from urllib.request import urlretrieve
path_data, _ = urlretrieve(readfcs.datasets.example(), "example.fcs")
adata = pm.io.read_fcs(path_data)
adata
AnnData object with n_obs × n_vars = 65016 × 16
var: 'channel'
uns: 'meta'
Reduce features#
We split the data matrix into the marker intensity part and the FSC/SSC part. Moreover, we move all height related features to the .obs
part of the anndata file. Notably. the function split_signal
checks if a feature name is either FSC/SSC or whether a name endswith -A
for area related features and -H
for height related features.
pm.pp.split_signal(adata)
'area' is not in adata.var['signal_type']. Return all.
Let us check the var_names
of the features and the channel names. In this example, the channel names have been cleaned such that none of the markers have the -A
or -H
suffix.
adata.var
channel | signal_type | |
---|---|---|
FSC-A | FSC-A | other |
FSC-H | FSC-H | other |
SSC-A | SSC-A | other |
KI67 | KI67 | other |
CD3 | CD3 | other |
CD28 | CD28 | other |
CD45RO | CD45RO | other |
CD8 | CD8 | other |
CD4 | CD4 | other |
CD57 | CD57 | other |
VIVID / CD14 | VIVID / CD14 | other |
CCR5 | CCR5 | other |
CD19 | CD19 | other |
CD27 | CD27 | other |
CCR7 | CCR7 | other |
CD127 | CD127 | other |
Let us modify the feature column signal_type
manually.
adata.var["signal_type"] = adata.var["signal_type"].cat.add_categories(["area"])
adata.var["signal_type"][3:] = "area"
adata.var
channel | signal_type | |
---|---|---|
FSC-A | FSC-A | other |
FSC-H | FSC-H | other |
SSC-A | SSC-A | other |
KI67 | KI67 | area |
CD3 | CD3 | area |
CD28 | CD28 | area |
CD45RO | CD45RO | area |
CD8 | CD8 | area |
CD4 | CD4 | area |
CD57 | CD57 | area |
VIVID / CD14 | VIVID / CD14 | area |
CCR5 | CCR5 | area |
CD19 | CD19 | area |
CD27 | CD27 | area |
CCR7 | CCR7 | area |
CD127 | CD127 | area |
Repeat to split the data matrix.
pm.pp.split_signal(adata)
adata
AnnData object with n_obs × n_vars = 65016 × 13
obs: 'FSC-A', 'FSC-H', 'SSC-A'
var: 'channel', 'signal_type'
uns: 'meta'
This time, we did not get the warning that all features are returned. Indeed, the data matrix was reduced by three features (FSC-A
, FSC-H
and SSC-A
).
Compensation#
Next, we compensate the data using the compensation matrix that is included in the FCS file header. Alternatively, one may provide a custom compensation matrix.
pm.pp.compensate(adata)
Normalize data#
In the next step, we normalize the data. By default, normalization is an inplace operation, i.e. we only create a new anndata object, if we set the argument copy=True
. We demonstrate three different normalization methods that are build in pytometry
:
arcsinh
logicle
bi-exponential
adata_arcsinh = pm.tl.normalize_arcsinh(adata, cofactor=150, copy=True)
adata_logicle = pm.tl.normalize_logicle(adata, copy=True)
/home/runner/work/pytometry/pytometry/.nox/build-3-9/lib/python3.9/site-packages/pytometry/tools/_normalization.py:161: RuntimeWarning: invalid value encountered in double_scalars
y = (ae2bx + p["f"]) - (ce2mdx + value)
adata_biex = pm.tl.normalize_biExp(adata, copy=True)